
Matrix Algebra 2
:Vector Space
 The set of matrices A ∈ mxn endowed with the operations of

matrix addition and scalar multiplication (as we have defined
these operations) provides a special case of an important
mathematical object called a vector space (over .

 Intuitively, a vector space is a collection of objects that is
closed under linear combinations. That is (i) forming linear
combinations (l.c.) makes sense, and (ii) forming linear
combinations always leads to a vector in the collection.

 m is a vector space and we call its members vectors.

In what follows, we’ll denote a vector space by V.



:Subspace (or linear manifold)
Definition: A set of vectors S ⊂ V is called a subspace if
∀x1,x2 ∈ S and ∀c1,c2 ∈  then c1x1  c2x2 ∈ S.
Rks:
 Because S ⊂ V, it inherits the property that l.c. makes sense.
 In words, S is a subspace if it is closed under l.c.
 A subspace is also a vector space.

Ex: Let V  m,S  X ∈ m : X ′  x, 0,, 0. Then S is a
subspace, since

c1X1  c2X2 

c1x1  c2x2

0


0

∈ S



:Linear Span
Definition: Let X  X1,XK ∈ V. The linear span of X,
denoted SpX, is given by

SpX  y ∈ V : y ∑
i1

K

ciXi for some ci ∈ 

Rks:
 In words, SpX is the set of all vectors that can be formed by

taking l.c. of the members of X.
 SpX is a vector space. In fact, it is the smallest vector

space that contains X.
 If X is a matrix, we write SpX for the span of its columns.



:Linear Dependence
Definition: A set of vectors X  X1,Xr ∈ V is said to be
linearly dependent if there exist numbers c1,c2,,cr that are
not all zero such that c1X1  c2X2   crXr  0

Ex: Suppose X1
′  1 0 and X2

′  2 0

Then X1,X2 is linearly dependent because 2X1 − X2  0.

:Linear Independence
Definition: A set of vectors X  X1,Xr ∈ V is said to be
linearly independent if it is not linearly dependent, i.e.

c1X1  c2X2   crXr  0 

c1  c2    cr  0
Note that here independence is algebraic, not statistical.



:Rank
Definition: The rank of a matrix A, denoted rkA or A is
its maximal number of linearly independent columns.
Rk: The rank also equals the maximal number of linearly
independent rows.

:Basis
Definition: A linearly independent set X is a basis for the
vector space V if V  SpX.



: Dimension
Definition: The dimension of a vector space, dimV, is the
number of elements in the basis X.
Propositions:
1. Every vector space has a basis
2. The dimension of a vector space is unique, i.e. if

X  X1,,Xk and X  X1,,Xl are two choices for
the basis, then k  l

3. Ever vector in V has a unique representation as a l.c. of
the members of a fixed basis.
Proof: Suppose Y  ∑aiXi and Y  ∑biXi,

∑ai − biXi  0  ai − bi  0

as Xi is a basis, and therefore linearly independent.



:Geometry in m (note to self–Draw some pictures....)
Definition: The norm (length) of a vector a ∈ m, denoted
‖a‖, is given by ‖a‖ a ′a1/2.
Rks:
 For m  1, ‖a‖ |a|
 For m  2, ‖a‖ a1

2  a2
2

 For m  3, ‖a‖ a1
2  a2

2  a3
2

So this definition generalizes the usual (Euclidean) notion
of length to arbitrary dimensions.
Properties
 ‖ca‖ |c|‖a‖ ∀c ∈ 
 ‖a  b‖≤ ‖a‖‖b‖
 ‖a‖ 0 iff a  0



Previous 3 properties hold for any norm. If norm comes
from an inner product, we also get
 |a ′b| ≤ ‖a‖‖b‖ (Cauchy-Schwartz inequality)

Definition: For a and b ∈ m, the angle  between them is
defined by

cos  a ′b
‖a‖‖b‖

Rks:
 In 2 and 3, this corresponds to our usual notion of angle
 By C-S, cos2 ≤ 1

Definition: Two vectors a and b ∈ m are orthogonal to each
other if cos  0  a ′b  0

Definition: Let V be a subspace. The vector a is normal to
V, denoted aV, if it’s orthogonal to each b ∈ V.


