Matrix Algebra 2

:Vector Space

- The set of matrices $A \in \mathbb{R}^{m \times n}$ endowed with the operations of matrix addition and scalar multiplication (as we have defined these operations) provides a special case of an important mathematical object called a vector space (over \mathbb{R}).
- Intuitively, a vector space is a collection of objects that is closed under linear combinations. That is (i) forming linear combinations (l.c.) makes sense, and (ii) forming linear combinations always leads to a vector in the collection.
- \mathbb{R}^{m} is a vector space and we call its members vectors.

In what follows, we'll denote a vector space by V.
:Subspace (or linear manifold)
Definition: A set of vectors $S \subset V$ is called a subspace if $\forall x_{1}, x_{2} \in S$ and $\forall c_{1}, c_{2} \in \mathbb{R}$ then $c_{1} x_{1}+c_{2} x_{2} \in S$.
Rks:

- Because $S \subset V$, it inherits the property that l.c. makes sense.
- In words, S is a subspace if it is closed under l.c.
- A subspace is also a vector space.

Ex: Let $V=\mathbb{R}^{m}, S=\left\{X \in \mathbb{R}^{m}: X^{\prime}=(x, 0, \cdots, 0)\right\}$. Then S is a subspace, since

$$
c_{1} X_{1}+c_{2} X_{2}=\left[\begin{array}{c}
c_{1} X_{1}+c_{2} X_{2} \\
0 \\
\vdots \\
0
\end{array}\right] \in S
$$

:Linear Span

Definition: Let $X=\left\{X_{1}, \cdots X_{K}\right\} \in V$. The linear span of X, denoted $\operatorname{Sp}(X)$, is given by

$$
\operatorname{Sp}(X)=\left\{y \in V: y=\sum_{i=1}^{K} c_{i} X_{i} \text { for some } c_{i} \in \mathbb{R}\right\}
$$

Rks:

- In words, $\operatorname{Sp}(X)$ is the set of all vectors that can be formed by taking l.c. of the members of X.
- $S p(X)$ is a vector space. In fact, it is the smallest vector space that contains X.
- If X is a matrix, we write $S p(X)$ for the span of its columns.
:Linear Dependence
Definition: A set of vectors $X=\left\{X_{1}, \cdots X_{r}\right\} \in V$ is said to be linearly dependent if there exist numbers $c_{1}, c_{2}, \cdots, c_{r}$ that are not all zero such that $c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{r} X_{r}=0$
Ex: Suppose $X_{1}^{\prime}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $X_{2}^{\prime}=\left[\begin{array}{ll}2 & 0\end{array}\right]$
Then $\left\{X_{1}, X_{2}\right\}$ is linearly dependent because $2 X_{1}-X_{2}=0$.
:Linear Independence
Definition: A set of vectors $X=\left\{X_{1}, \cdots X_{r}\right\} \in V$ is said to be linearly independent if it is not linearly dependent, i.e.

$$
\begin{aligned}
c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{r} X_{r} & =0 \quad \Leftrightarrow \\
c_{1} & =c_{2}=\cdots=c_{r}=0
\end{aligned}
$$

Note that here independence is algebraic, not statistical.
:Rank
Definition: The rank of a matrix A, denoted $r k(A)$ or $\rho(A)$ is its maximal number of linearly independent columns.
Rk: The rank also equals the maximal number of linearly independent rows.
:Basis
Definition: A linearly independent set X is a basis for the vector space V if $V=S p(X)$.

: Dimension

Definition: The dimension of a vector space, $\operatorname{dim}(V)$, is the number of elements in the basis X.
Propositions:

1. Every vector space has a basis
2. The dimension of a vector space is unique, i.e. if
$X=\left\{X_{1}, \cdots, X_{k}\right\}$ and $\widetilde{X}=\left\{\widetilde{X}_{1}, \cdots, \widetilde{X}_{l}\right\}$ are two choices for the basis, then $k=l$
3. Ever vector in V has a unique representation as a l.c. of the members of a fixed basis.
Proof: Suppose $Y=\sum a_{i} X_{i}$ and $Y=\sum b_{i} X_{i}$,

$$
\Rightarrow \sum\left(a_{i}-b_{i}\right) X_{i}=0 \Rightarrow a_{i}-b_{i}=0
$$

as $\left\{X_{i}\right\}$ is a basis, and therefore linearly independent.
:Geometry in \mathbb{R}^{m} (note to self-Draw some pictures....)
Definition: The norm (length) of a vector $a \in \mathbb{R}^{m}$, denoted $\|a\|$, is given by $\|a\|=\left(a^{\prime} a\right)^{1 / 2}$.
Rks:

- For $m=1,\|a\|=|a|$
- For $m=2,\|a\|=\sqrt{a_{1}^{2}+a_{2}^{2}}$
- For $m=3,\|a\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$

So this definition generalizes the usual (Euclidean) notion of length to arbitrary dimensions.

Properties

- $\|c a\|=|c| \cdot\|a\| \quad \forall c \in \mathbb{R}$
- $\|a+b\| \leq\|a\|+\|b\|$
- $\|a\|=0$ iff $a=0$

Previous 3 properties hold for any norm. If norm comes from an inner product, we also get

- $\left|a^{\prime} b\right| \leq\|a\| \bullet\|b\|$ (Cauchy-Schwartz inequality)

Definition: For a and $b \in \mathbb{R}^{m}$, the angle θ between them is defined by

$$
\cos (\theta)=\frac{a^{\prime} b}{\|a\| \cdot\|b\|}
$$

Rks:

- In \mathbb{R}^{2} and \mathbb{R}^{3}, this corresponds to our usual notion of angle
- By C-S, $\cos ^{2}(\theta) \leq 1$

Definition: Two vectors a and $b \in \mathbb{R}^{m}$ are orthogonal to each other if $\cos (\theta)=0 \Leftrightarrow a^{\prime} b=0$

Definition: Let V be a subspace. The vector a is normal to V, denoted $a \perp V$, if it's orthogonal to each $b \in V$.

